Computing the equivariant cohomology of group compactifications

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Height Zeta Functions of Equivariant Compactifications of the Heisenberg Group

— We study analytic properties of height zeta functions of equivariant compactifications of the Heisenberg group.

متن کامل

Equivariant Cohomology and Representations of the Symmetric Group

f : Cn(R ) → U(n)/T n from the configuration space of n ordered distinct points of R to the flag manifold of U(n) which is compatible with the natural action of the symmetric group Σn on both spaces. I also noted in [1] that the action of Σn on the rational cohomology of either space coincides with the regular representation but that the homomorphism f induced by f cannot possibly be an isomorp...

متن کامل

Intersection cohomology of B ×B-orbit closures in group compactifications

An adjoint semi-simple group G has a “wonderful” compactification X, which is a smooth projective variety, containing G as an open subvariety. X is acted upon by G×G and, B denoting a Borel subgroup of G, the group B × B has finitely many orbits in X. The main results of this paper concern the intersection cohomology of the closures of the B × B-orbits. Examples of such closures are the “large ...

متن کامل

Applications of Equivariant Cohomology

We will discuss the equivariant cohomology of a manifold endowed with the action of a Lie group. Localization formulae for equivariant integrals are explained by a vanishing theorem for equivariant cohomology with generalized coefficients. We then give applications to integration of characteristic classes on symplectic quotients and to indices of transversally elliptic operators. In particular,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 1991

ISSN: 0025-5831,1432-1807

DOI: 10.1007/bf01445207